2t Fermilab

Comparison of the
Frontier Distributed Database Caching System
with NoSQL Databases

Dave Dykstra

Fermilab is operated by the Fermi Research Alliance, LLC
under contract No. DE-AC02-07CH11359 with the United States Department of Energy


mailto:dwd@fnal.gov

e Common characteristics of NoSQL databases
* The Slashdot Effect

* Frontier Distributed Database Caching system
characteristics

* CMS Frontier/Squid deployment examples
* Comparison of Frontier to NoSQL in general

* Comparisons to MongoDB, CouchDB, Hadoop
HBase, and Cassandra

* Conclusions



* Slashdot Effect (or, slashdotting): when a too-
small server is overwhelmed by the same
request from too many clients

- Named for slashdot.org, a very popular “News for

Nerds” website that often hyperlinks to less-popular
sites

* For web servers, usual solution is to use a
Content Delivery Network (CDN) that either
replicates or caches the objects around the world

* Some database applications have similar need

3



* “NoSQL” denotes a large variety of Database
Management Systems (DBMS)

* Primary unifying characteristic: not a Relational
Database Management System (RDBMS)
- Generally nested key/value instead of row/column
* Run-time flexibility, doesn't need pre-defined schemas

—Most don't support the RDBMS standard Structured
Query Language SQL

* Most popular NoSQL DBs support being distributed
and fault-tolerant — highly scalable on commodity HW

* Most give up atomicity of updates (ACID) and instead

have eventual consistency (BASE)
4



* The Frontier Distributed Database Caching
System is designed for the Slashdot Effect —
many readers of same data, few writers

— Distributes RDBMS SQL queries (not “NoSQL")

- RESTful, so cacheable with standard web proxy
caches (we use Squid)

- Web caches on client premises make ideal CDN

 Most network traffic on LAN, scalable as needed
 Practically maintenance-free

- Simultaneous same requests collapsed to one
- Simultaneous different requests queued at server

3}



I
L. 3

S
RDBMS |

Offline
Frontier
Servers

Tomcat+
Servlet+
Squid

: TierQ
TierQ
/ :> Farm

N

Tier1, 2, 3
()=

Wide
Area
Network

* Only custom software is Frontier servlet in Tomcat and
frontier_client in application on worker node farms

* Planning to replicate RDBMS & Frontier servers for availability

6

TierN
Farm

Tier1, 2,3
@&~

TierN
Farm




*For Tier 0, 1, & 2 (not counting Tier 3):
- Average 250 job starts per minute worldwide

- Average 500,000 total Frontier requests per minute,
aggregate average total 500MB/s

* Bursts at sites are much higher than average

* The 3 central server Squids at CERN only get
4,000 average requests per minute, 0.5MB/s

- Factor of 125 improvement on requests and 1000 on
bandwidth (not counting Tier 3)

* VVast majority of jobs read very quickly because
results already cached & valid in local Squids

7



* Frontier tomcat server

- 3-year old 8-core machine (Xeon L5420 @ 2.5Ghz):

« Without compression, easily saturates 1Gbit network out

« With gzip compression, drops to 25MB/s out (but saves
much bandwidth later in the caches)

« Adds 1/3rd overhead before gzip to avoid binary data
* Squid
- 2-year old machine (Xeon E5430 @ 2.66Ghz):
« Saturates 2Gbit network with one single-thread Squid

—-modern machine (AMD Opteron 6140):

« Up to 7Gbps on 10Gbit network with a single-thread Squid

« Can get full throughput with two Squids on same port
8



I
L. 2

_ =

Servlet+ | —

Squid \E

Squids

Online |
Frontier u :
/* Servers P :
Tomcat+ |7 u —» FH
T~

* Squid placement is very flexible for more bandwidth
- Hierarchy of Squids on every worker node
- Blasts data to all 1400 nodes in parallel



o
L. 2

DB structure
Consistency
Write model
Read model

Data model

Distributed elements

Frontier NoSQL in general
Row/column Nested key/value
Eventual Eventual
Central writing Distributed writing

Many readers same data

Central data,
cache on demand

General purpose

Read many different data

Distributed data, copies

Special purpose

10




* “Mongo” for “humongous” - for big, cheap data
* Stores binary JSON (JavaScript Object Notation) data
* Any field can be memory-indexed for performance
— Common in RDBMS, not common in NoSQL
* Flexible queries

- By fields, ranges, and regular expressions
— Similar to RDBMS, not common in NoSQL
* Only one write server per data item

- Copies are read-only, can take over as master if
master goes down

11



e Scales by sharding, splitting writing of different
data to different servers

— Not great at Slashdot effect
* Used by CMS for Data Aggregation Service
(DAS)
- Needed the dynamic structure, liked other features
- Not a big installation though, only one server

* Supports MapReduce for distributing query
processing to where the data is

— An ATLAS evaluation showed this didn't work well

but it is supposed to be better now in version 2.0
12



I
L. 2

e Stores JSON

* RESTful interface
— Can use http proxy caches where needed
- Also easy to insert authentication proxy

* Automated, low-maintenance replication
* All copies get all data, all can read and write

* Uses MultiVersion Concurrency Control (MVCC)

- Feature of RDBMS - transactions, ACID
- Readers get consistent view
- Writing doesn't block reading

- Write conflicts automatically detected and aborted
13



* Supports MapReduce
* Used by CMS for some data and workflow
management queues, job state machine

- CouchDB data replicated between CERN and
Fermilab, 3 replicas at CERN and 4 at Fermilab

14



I
L. 2

IBase is built on |
-HDFS automatical

adoop Distributed FileSystem

y distributes files and replicates

them across a cluster
- Very reliable and automated for large amount of data

* Modeled after Google's BigTable

- Billions of rows with millions of columns
- Good for search engine-like applications

* Very good at MapReduce
* Good for big installations, not small

15



* Tunable replication level
* Also has SQL interface via Hive add-on

* Used by ATLAS distributed data manager for log
analysis and accounting on a 12-node cluster

-8 to 20 times faster than Oracle for accounting
summary, depending on replication level

* HBase recognized by the WLCG Database
Technical Evolution Group as having greatest
potential impact of all the NoSQL technologies

* CERN IT is setting up a cluster

16



I
L. 2

* Like HBase, modeled after Google BigTable

* All nodes are masters, decentralized control for
geographically distributed fault tolerance

- Dynamic re-configuration with no downtime
* Keys and values can be any arbitrary data

* Has static “column families” used like indexes In
RDBMS

* Tunable consistency from always consistent to
eventual consistency

* Tunable replication level

17



* Originally written by Facebook, but they
abandoned it in favor of HBase

* Used in production by ATLAS PanDA monitoring
system

- Hosted on 3 high-power nodes at BNL, 12
hyperthreaded cores each, 1TB of RAIDO SSDs
each

18



I
L. 2

* NoSQL databases have a wide variety of
characteristics, including scalability

 Frontier+Squid easily & efficiently add scalability
to Relational databases when there are many
readers of the same data

- Also enables clients to be geographically distant
* CouchDB with REST can have same scalability

 Hadoop HBase has most potential for big apps

* There are good applications in HEP for many
different Database Management Systems

19



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

